2020年11月10日火曜日

品質工学を使ったMIM成形実験

前報と同じインドの2大学で行われた品質工学を使った実験。今回はMIMの成形実験のパラメータ設計、最適化の事例である。

【実験条件】変形L27直交表(3水準×8因子)、特性値:衝撃強度、8因子:(射出圧力、射出温度、金型温度、保圧、射出速度、粉末量、保圧時間、冷却時間)材質:SUS316L(ガスアトマイズ粉、OSPREYD50=13μ、<53μ99.2%、TD5.0g/cc)、バインダー:(PMMAPEGSA 3種配合比不明)脱脂:水脱脂60℃×6H→乾燥→加熱脱脂350℃(アルミナ粉末中)→徐冷、予備焼結:900℃×1H、焼結:1360℃×1.5H(真空)

因子

水準1

水準2

水準3

射出圧力

50MPa

60

70

射出温度

140

150

160

金型温度

45

50

55

保圧

65MPa

70

75

射出速度

5cm/s

10

15

粉末量

60VOL%

61.5

63

保圧時間

5sec

10

15

冷却時間

5sec

8

11

 

【結果】有意になったものは3つ「射出圧力(28%)」「金型温度(11%)」「粉末量(5%)」である。その他の因子は誤差にプーリングさせる。()の%数字は、この実験範囲内の寄与率。 要因効果図は、SN比ではなく特性値そのままで作図する。








【珈琲ブレイ句】衝撃強度を高めるには、「射出圧力を高くする」「金型温度を上げる」この2つは100%納得できますね、確実に成形密度が向上し、内部欠陥(ウエルド等)が減少する効果が期待できるからです。ただ、有意であった「粉末量」は、真ん中の水準61.5VOL%が最適となっています。この数字が微妙にハテナ?なのです。粉末TD=5.0g/ccにしては、全体的に粉末量が少なく感じる。

内部欠陥を完治させるためには「保圧」の方が重要じゃないのかと思われた方は上級者です。今回の実検で保圧が有意でないのは「実験の水準巾が狭かった(実験計画の問題)」ためだと思われます。つまり今回の保圧の水準は「すべて保圧が高い」と思われます。「保圧は65MPa以上で差が出ない」と解釈しています。

参考文献:http://technical.cloud-journals.com/index.php/IJAMME/article/view/Tech-331

【日曜MIM知るINDEX】MIM指南書増補セルフ

【いつでもオンデマンド講習会】 【MIM技術伝道士HP】